Estimating Structured Vector Autoregressive Models

نویسندگان

  • Igor Melnyk
  • Arindam Banerjee
چکیده

While considerable advances have been made in estimating high-dimensional structured models from independent data using Lasso-type models, limited progress has been made for settings when the samples are dependent. We consider estimating structured VAR (vector auto-regressive model), where the structure can be captured by any suitable norm, e.g., Lasso, group Lasso, order weighted Lasso, etc. In VAR setting with correlated noise, although there is strong dependence over time and covariates, we establish bounds on the non-asymptotic estimation error of structured VAR parameters. The estimation error is of the same order as that of the corresponding Lasso-type estimator with independent samples, and the analysis holds for any norm. Our analysis relies on results in generic chaining, subexponential martingales, and spectral representation of VAR models. Experimental results on synthetic and real data with a variety of structures are presented, validating theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Seasonal Autoregressive Models for Estimating the Probability of Frost in Rafsanjan

This work develops a statistical model to assess the frost risk in Rafsanjan, one of the largest pistachio production regions in the world. These models can be used to estimate the probability that a frost happens in a given time-period during the year; a frost happens after 10 warm days in the growing season. These probability estimates then can be used for: (1) assessing the agroclimate risk ...

متن کامل

Regressor and structure selection in NARX models using a structured ANOVA approach

Regressor selection can be viewed as the rst step in the system identi cation process. The bene ts of nding good regressors before estimating complex models are especially clear for nonlinear systems, where the class of possible models is huge. In this article, a structured way of using the tool Analysis of Variance (ANOVA) is presented and used for NARX model (nonlinear autoregressive model wi...

متن کامل

Supplement: Estimating Structured Vector Autoregressive Model

Consider a vector autoregressive (VAR) model of order d: xt = A1xt−1 + . . .+Adxt−d + t, t = 0,±1,±2, . . . , (1) where xt ∈ R is a random vector, Ai ∈ Rp×p, i = 1, . . . , d are fixed coefficient matrices and t is a vector of zero-mean white noise, i.e., E( t) = 0, E( t t ) = Σ and E( t T t+h) = 0, for h 6= 0. We assume that the noise covariance matrix Σ is positive definite with bounded large...

متن کامل

Vector Autoregressive Model Selection: Gross Domestic Product and Europe Oil Prices Data Modelling

 We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016